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When subjected to wave action, a beach composed of pebble or sand assumes
the form of a cylindrical surface which remains fixed for constant wave for-
ces, If the wave force changes, this surface will moove.

The present paper gives an approximate quantitative analysis of this phe-
nomenon and compares the results with observational data. The consistancy
of position of the particles of the beach in a stable state 1s, apparently,
guaranteed by the condition of equilibrium of the gravity force mg., the
hydrodynamic resistance p,, and the force of interaction with the adjacent
particles p, (Pig.l), i.e.

Py — P, + mgsina =0 (1)
It can be considered that

Py = mgf cos a, Py = Y5 pv,.,28C,

where s 18 the coefficlent of friction, Vpax 18 the maximum veloclity of
the water flowing around the particle in the backrush phase.

The equation of the curve y = y(x) which describes the stable form of
the beach is unknown; therefore, ¢ 1is an unknown quantity. The magnitude of
Vmax 18 also unknown, To determlne vp,. it 1s neces-
sary to solve the hydrodynamic problem of the motion
of the sheet of water of the surf on the sloping
beach., Inasmuch as this sheet of water usually
proves to be a thin one, its motlon may be described
quite simply by approximate hydrodynamic relations.
If we introduce the coordinate & along the curve
V- z(x) and n along the normal (Fig.l), the appro-
ximate equations will have the form

v v g 0 .
E—%—v—a; = —-Ea;(n*cosa)—}—gsma—ﬁ‘,
Fig. 1

where v 18 the veloclty along s, n 18 the thickness of the sheet, and
F, 18 the reslsting force per unlt mass of water due to the rough bottom.
Tﬁe width of an element of fluid and its length along g are denoted by »
and (e, respectively. Then assuming that the pebdle particles are oblate
spheroids with major axis ¢ and minor axis o , we may conclude that
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~ bde/a’ particles of pebble will be located in the area dds occupied by
an elementary volume of fluid. Therefore, the force exerted by the area
dds of the bottom on the volume of fluid of mass gm = pndds Will be equal
to p1®SC bds/ 2a® and the force acting per unit mass will be

SC,
Fi= 2 @

where § 18 that area of the plece of pebble which takes part in forming
the hydrodynamlc reslstance, and (, 1s the corfficient of this resistance.

To estimate the various terms of Equations (2) and to simplify the latter,
we introduce the dimensionless varilables V¥, ¢, h, r 1n accordance with

Formulas —_—
v= VgV, s=Io, =gelh, t=Viign 4

where 7 1s a characteristic length along & and &€<€ 1. Then from obvious
hysical conslderations it follows that VYV ~g¢g ~h ~ 1~ 1. The Equations
2) transform into

W & e 8(h%osa) C nef oh , O WVh
7tV T TmT e tEme— gy VE it =0 O

where the Expression 2imgo{ 1s substituted for the area § ({ < 1). The
coefficient ¢ takes account of the fact that a pebble particle does not
projJect completely above the adjacent ones and the effective midsection area
in the formula for hydrodynamic resistance should be taken smaller than the
actual midsection area.

It is apparent from the Equations (5) that the first term on the right-
hand side of the firast equation can be neglected and that the last term 1s
of the order of 0.005/¢ for the natural estimates (,~ 0.1 , (o/a ~ O.1
(flattened pebble). That is, the conditions of applicability of these rela-
tions is e = 0.005. We then have the simplified equations

v dv . Cnle an 8 (vn)
ot ¥ 55 —gsne — o ot 7o =0 ©)

Transforming to the Lagranglan coordinates s, ! (s = s(sy, t), t = 1), we
obtain

as ov . k Os nC.Le
T g Esna— v ng—=fls), k= e )

where f{g,) 18 an arbitrary function which is determined from the inital data.
Equations (7) must be supplemented by the initizl conditions

v (59 0) = Vo (sg)y 7 (50, 0) = ng (s9),- 5 (50 0) = 5

Observation shows that at the instant of the beginning of the backrush
of the wave, the velocities of all particles of the water go to zero almost
simultaneously, 1.e., the condition’ v°(9 ) = 0 can be assumed. The solution
of the problem which has arisen 1s comps.‘.cated, for the addition to its non-
linearity, a(s,) is uninown and must be determined from Equation (1) which
contains, 1in turn, the unknown vpg, found from the solution of the hydro-
dynamic prcblem.

However, for our purposes, there is no necessity to solve the entire
hydrodynamic problem; 1t 1s sufficlent to determine v for every point
of the curve over which the sheet of water flows, Thismﬁst problem can be
solved approximately in the following manner.

In Equations (1) and (7) let us transform to the dimensionless variables
v= VgV, t= Vagt, s=a0, s5=a0, n=av 8)

and take account of Formula
m = Yy na%e (py — p) 9
where p, is the density of tihe material of the pebble, We shall then have
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oo av R p
Frials W=sma-—-‘,\;‘V2 (10)
sina — feosa + gV 2 =0 (11)
afC,c 3LC.0
8z "4, —0 (12)

If in Equations (10) we transform from the variables Ogr T tO 045, 0,
then the equation which 1s obtained for 1® (a linear ordinary differential

equation) can be formally integrated, taking account of the initial condi-
tion v,= 0

G ]
. 2pdh
V2 = 2% sin a (§) exp [—S m]d& (13)
Te
This integral is formal since v(co , 1) 1s unknown. However, Equation

(13) permits us to make estimates necessary for the determination of Vpax.
We differentiate (13) with respect to g,

Fad

g [+ [¢]
v , - © 2pdh % v (Gh)
90, = — 2sina {gy) + 2& sin a (E) exp I:—é v A ][5 TR 6000 dh |dE (14)
s
From (14) we have 0V%/d6,<<0 for o ~ Oy, As T - , l.e, 85 0~ =,

we have from (10), (11) and (13)
V—-V,=const, v-—>v, =const, a-a,=const, v sina, —pV 2=0

i.e. v eventually ceases to depend on g, and the second term on the right-
hand side of (14) goes to zero. This allows us to conclude with a great
degree of certainty that the inequality dV2/ 80y >0 never occurs, that is,

that for each value of ¢ the maximum velocity is attained at the fluid par-
ticle o,= O.

Thus, for every point on the curve we have Vmax:' V|5. Therefore, the
problem finally reduces to the solution of the following system of equations
and initial conditions (the subscript max on V¥ 1s omitted) (15)

do v .

= v, g7 = sina (o) — pve, sih@d — fecosa 4 g2=0, 60 =0 V(@O =0
We shall assume that the quantity . = p/\) in these equations 1s con-

stant, for v varles only slightly and some mean value Vs can be used.

Thls mean value can be detrmined, for example, experimentally from the rela-
tion

(%+1)sin 0y = fcosa,, (16)

which 1s obtained from (15) for T— o0, dV/dt—> 0. If the gquantity o, 1s
¥nown from experiment, then v, and the ratio g¢/u are obtained in acBord-

ance with (16
q f v =“¢(P1‘“P)(t f 1)

TL- = tan Q. — 1 * 6ap anaoo'_

(17)
Eliminating the quantity v from (15), we obtain an equation for g alone

{18
(14 qg/p)sina — fcosa _ )
fsina 4 cosa ’ e(0)=ay= o |

2 -
5%‘——7%— Vicosa —sina

We thus have an initial value problem for o(r), which is solvable by
quadratures «

S {f sin a 4 cos a) da 2u
— = =T
J 1+ g/psina — fcosal Vicosa —sina Ve
0
Using the relations do cosa = d& E==z/ a), do =V dtr and Equatlons

(19)
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(15), we find (20)
a

df __ _ 1 cosa(fsina+ cosa) _ LS cos a (f sin a 4 cos @) da
da 2p(14g/p)sina — fcosa of E—_2p. (14 ¢/p)sina — fcosa

7]
Purthermore, gn = — tanqg 4§ , so that

a
1 S sin a (f sin @ 4 cos ) da

"= W YT F g/p)sina — feosa 1)
X
We introduce the variables 2uf = Y , 2un =Y . Then
L)
X = S cos a (f sin g 4 cos a) da
T Y0+ g¢/w)sina —feosa T
sin o, ¢ tan [1/5 (@g — )]
= Sna, |05 %o — 8 (@ -+ @ — ) - €08 ag, €0 (2 — Ag) In o2 [y (@ —ay)
o
_ ( sina (fsina + cos a) da
_Y_S(l—f-q/p)sina—jcosaz 22)
sina, . * ) wn [1/; (@ — 0]
= fna, sin o, — sin (@ + a,, — @) + sin @, cos (zg — am)lnm

Eliminating the parameter o , we obtain the equatlon of the curve
Y = — ®(X;/, /), which depends only on the two parameters s and
rf.=tana_ . In order to transform to the dimensional variables x and

¥y and ¥ must be multiplied by the dimensional factor 7

a 4a¥v, 2(p—0p) (|
L=y =afCre™ ~ 3L Cpp (fq, 1)“ (23)

Substituting the values §~0.3, Cx~0.3, p1/p~3, f/fo—~3 we have
I ~30ag; if the dimension of the pebble ¢ ~ 3cm, then L ~ 1m, which is
in accord with the results of observation. If. however, we have a sand for
which we may take Cx~0.6,{~0.3,p,/p~3,f/fo—~T,8~0.1cx, then we have
I ~ 4.5 em . Thus, for a sand beach the curve y = y(x) 1s practically a
straight line.
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Fig. 2

In the summer of 1962, the author carried out some measurements of the
farm of the carve y =ylx) on a pebble beach at the settlement of Rybach'ye
{(Crimea). The measurements were made at various surf intensity in calm and
stormy weather, using the simplest apparatus. The results are shown in
Fig.2. The symbols in Fig.2 corresond to the following conditions under
which measurenents were conducted: triangles with vertex down, rhombuses,
¢ircles, horizontal lines, and lines inclines to the left or right are meas-
urements in calm weather for light surf; trilangles with vertex up and the
two forms of semicircles are measurements for a very stormy sea, which
shifted the boundary of the zone washed by the waves far (by several meters)
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onto the dry land. The curve of Equation (22) 1s shown on the same figure
for the case f=tana, = 0.75, f,=f/(1+ ¢/pn) = 0.20, { = 0.30,C, = 0.30,
p1/p=3,a=3 cm . The unit of the coordinate axes 1s equal to 12 cm.
Curves calculated from Equations (22) and (22) for the same conditions and
the four values of 7, Indicated are given in Fig.3.

To determine s properly, a cone of dry and wet pebble was poured on the
beach and the angle of the vertex of the cone was measured. In addition, the
angle of inclination of the curve y=yp(x) at the ridge (x = O) was measured.
The results of these measurements were close and gave f=0,75. The choice

of %/ » 1.6, of y_ = tan g, was made according to the experimental data for
f-y for large x , where the curve y-y(x became a practically straight
ine ?see Fig.2).

The data of Fig.2 indicate, first of all, that the curve = y(x) actually
depends only slightly on the strength of the surf (as was mentioned above,
the position of this curve, that 1s, the location of the polnt x=y=0 ,
depends greatly on the strength of the surf). Secondly, they show that the
approximate theory which has beer proposed describes the phenomenon satis-
factorily.

A more careful examination of Fig.2 shows that the average experimental
values of the ordinates of the curve y=y{x) for stormy weather differ from
the ordinates for a light surf by an approximately constant amount everywhere
except for the first three values of the abscissa. Therefore, if the curve
for heavy surf is shifted downward it willl colncide with the curve for a
light surf everywhere except at tlie points i1ndicated. Thils devlatlon 1s
explalned as follows. While for a light surf the boundary between the washed
and dry portlons of the beach .. outlined very clearly by a break in the
cross-sectional profile, the boundary is more nearly washed away 1n a storm,
This 1s related to the fact that the lrregularity of a stormy surf 1is consid-
erable and the edge of the sheet of water of the broken waves washes over
the ridge of the wetted part of the beach (the point x=y=0) and smoothes
it out by carrying particles from the rigde to the dry area during the uprush
of the wave, lowering the ordinates of the curve y -y(x) in the vicinity of
the poilnt x = 0 ,

If the revision of the curve is made, the curve of Fig.2 computed by the
proposed method turns out to be higher than the average of the experimental
values, It is possible, however, to obtaln colncldence of these curves by
adjusting slightly the values of ( and (, assumed above, within the range
of reasonable values for these quantities, l.e. by a suitable change in the
scale factor 7 and the values of tan q,.

We remark further that the equations which have been constructed are appli-
cable for the description of only that portion of the beach which 1s perlodic-
ally dralned and then washed once more by the sheet of water from the waves,
The profile of the portion of the beach which is always submerged is, as obser-
vation shows, cteeper, and is inclined almost at the angle of repose. ' Thus
the curve constructed above beginning at the place of impact of the breaking
waves as they approach the beach gradually becomes steeper and steeper upon
going out under the water and even at a depth of the order of 1lm slopes at
an angle of repose.
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The coordinates of the points of the curve y = y(x) were measured with
the aid of two graduated rods. The leveling of the rod (Ox was carriled out
with the aid of an underwater swimming mask on the glass of which a small
quantity of water was poured, making the mask into a level gage.

The author would like to thank L.S. Magaziner and V.M. Ryzhik, who assis-

ted in carrying out the measurements and G.I. Jevleva, who performed the
computations.

Translated by A.R.R.

ON A STABILITY PROBLEM

(OB ODNOI ZADACHE USTOICHIVOSTI)

PMM Vol.29, N 2, 1965, pp.391-392

V.I. FEODOS'EV
(Moscow)

(Received December 2, 1964)

In connectilon with the frequently passed, at the present time, scientific
discussions on the subject of stability of elastic systems with follower
forces we have programed and solved the following problem.

A thin elastic bar 1s executing a uniformly accelerated motion under the
action of a follower force, applled at one of 1ts ends.

The differential equation of the elastic line of a homogeneous bar will be

oty o[ P oy oy
EI‘é;}'I’a—x[T(l—x)—a—gg]—{—pFW:O

Assuming y = Xeim and passing to a nondimenslonel form we obtain

MV 4B =D —en=0

Here
2 4
The boundary condltions are
=0 n"=0, for L =0; =0 n"=0 for =1
We seek a solution in the form of a seriles
N=de+ 4L+ A8+ 4,3+ ...
According to the conditilons at the ends
Ay = A3 =0, ZAn(n—1) (n—2)=0, Sd,n{(n—1) =0 (1)

we have for the determination of the terms of the serles the recurrence
formula



