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When subjected to wave action, a beach composed of pebble or sand assumes 
the form of 8 cyllndr1cal surface which remalns fixed for constant wave for- 
ces. If the wave force changea, this surface will moove. 

The present paper gives an approximate quantitative analyels of this phe- 
nomenon and compares the results with obeervatlonal data. The conslstancy 
of position of the partlclee of the beach ln a stable state Is, apparently, 
guaranteed by the condltlon of equlllbrlwn of the gravity force mg, the 
hydrodynamic resistance p,, 
particles P, (Flg.l), I.e. 

and the force of Interaction with the adjacent 

‘h -P,+mgsina=O 

It can be coneidered that 
(1) 

P, = mgf cos a, P, = l/q p&~‘dsc, 

where y la the coefficient of friction, i’max Is the maximum velocity of 
the water flowing around the particle ln the backush phase. 

The equation of the curve I u(x) which describes the stable form of 
the beach Is unknown; therefore: c la an unknown quantity. The magnitude of 

~~~~1s also unhewn. To determine urnax It Is neces- 
sary to solve the hydrodynamic problem of the motion 
of the sheet of water of the surf on the sloping 
beach. Inasmuch as this sheet of water usually 
proves to be a thin one, Its motion may be described 
quite simply by approximate hydrodynamic relations. 
If we introduce the coordinate s along the curve 

along the normal (Flg.l), the appro- 
will have the form 

t 

FQ. 1 
(2) 

where u 1s the VeIoclty along 8, n 1s the thickness of the sheet, and 
F ia the reslstln8 force per unit ma88 of water due to the rough bottom. 
The width of an element of fluid and Its length along s 
and d8, respectively. 

are denoted by b 

spheroids 
Then assuming that the pebble particles are oblate 

with major axis o and minor axis c , we may conclude that 

440 
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= we/$ partSclea of pebble will be located ln the area &fs occupied by 
an elementary volume of fluid. Therefore, the force exerted by the area 
Ms of the bottom on the volume of fluid of mass dm - pn&s will be equal 
to pv8 SC,bds / 2a3, and the force acting per unit mass will be 

lASC 
",=& 

where s 1s that area of the piece of pebble which takes part ln forming 
the hydrodynamic resistance, and C, Is the corfflclent of this resistance. 

To eetlmate the various terms of Equations (2) and to simplify the latter, 
we introduce the dimensionless variables y. a. h, 7 in accordance with 
Formulas 

_ _ 

u= IGy, s = la, n = 8 lh, t= V/llg-c (4) 

where & Is a characteristic length along s and i?<i. Then from obvious 
h elcal considerations It follows that V-o-_h-v-i. The Equations 
p$ transform into 

(5) 

where the Expression )nccC Is substituted for the area S (C c 1). The 
coefficient C takes account of the fact that a pebble particle does not 
project completely above the adjacent ones and the effective midsection area 
ln the formuIa for hydrodynamic resistance should be taken smaller than the 
actual midsection area. 

It la apparent from the Equations (5) that the first term on the rlght- 
hand side of the first equation can be neglected and that the last term Is 
of the order of 0.005/e for the natural estimates 
(flattened pebble). 

c.- 0.1 , co/a - 0.1 
That Is, the conditions of appllcablllty of these rela- 

tions Is e&0.0()5. We then have the almpllfled equations 

c nfc ++gsjna- --1c__vs 
Ban ’ 

an a (4 
Tc+ as=0 

Transforming to the Lagranglan coordinates sc, t(s= s(sO, t), t = t), we 
obtain 

i3S au 69 as 
at v, at= gsina - n 

RC,SC -= , nK* f W, k= 8a 

(6) 

(7) 

where j(sc) Is an arbitrary function which Is determined from the lnltai data. 

Equations (7) must be supplemented by the lnltlel conditions 

v (se, 0) = vo (.%A n (G, 0) = so (4,. s (so, 0) = so 

Observation shows that at the instant of the beginning of the backrush 
of the wave, the velocities of all particles of the water go to zero almost 
slmultsneoualy, I.e. the condition‘ I& ) - 0 can be assumed. The sOlUtlOn 
of the problem which has arisen la comp??cated, for the addition to Its non- 
linearity, c(e,) Is -own and must be determlned from Equation (1) which 
contains, ln turn, the unknown vmaw found from the solution of the hydro- 
dynamic problem. 

However, for our purposes, there la no necessity to solve the entire 
hydrodynamic problem; It Is sufficient to determine v for every point 
of the curve over which the sheet of water flows. Thla%st problem can be 
solved approximately ln the following manner. 

In Equations (1) and (7) let us transform to the dlmenelonIeae 

v= V&v, t = I/a/g-r, s = aa, s, = auo, n = av 

and take account of Formula 

m = l/8 ~a2c (pl - p) 

where pI 1s the density of the material of the pebble. We shall 

variables 

(8) 

(9) 

then have 
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aJ dV 
-Z” az y - = sin 0~ _ 4 V2 8-c 

sin a - f cos a + r/V,~, = 0 (11) 

nt;C,c 
p=-87’ 

35C,P 

Q = 4 (PI - P) (12) 

If In Equations (10) we transform from the variables 
then the equation which Is obtained for 
equation) can be formally integrated, 

Ve (a linear ord%ri diFfe%nt?ai 

tion 
taking account of the initial condi- 

VO- 0 0 0 

Vz = 2 
2pdh 

v (o,, A) 1 4 (13) 

a* 6 

This Integral is formal since W(Q, A) Is unknown. However, Equation 
(13) permits us to make estimates necessary for the determination of 
We differentiate (13) with respect to so 

vmax. 

a 
LW 

7s 

da0 
- 2 sin a (crO) f 2 \ sina (i) exp[-\ s][ [ &a*dk]d4 (14) 

a* E i 

From (14) we have apIt&< for a - aO. As 7 - m , i.e. as .J - m, 
we have from (lo), (11) and (13) 

V-V, = con&, v + v, = const, a --> a, = const, v, sin a, - pVma = 0 

I.e. eventually ceases to depend on 
hand slide of (14) goes to zero. 

a, and the second term on the right- 
This allows us to conclude with 'a great 

degree of certainty that the inequality W/&J,>O never occurs, that is, 
that for each value of 
ticle 0,~ 0. 

u the maximum velocity is attained at the fluid par- 

Thus, for every point on the curve we have v,ax- VI,, Therefore, the 
problem finally reduces to the solution of the following system of equations 
and Initial conditions (the subscript max on [I is omitted) 

(151 
do 
zT = v, dv 

dy = sin a (0) - pp, Sin a - j cos a + qP = 0, u (0) = 0, v (0) = 0 

We shall assume that the quantity JJ = p/v in these equations Is con- 
stant, for v varies only slightly and some mean value v* can be used. 
This mean value can be detrmlned, for example, experimentally from the rela- 
tion 

sin a, = f cos a, (lfi) 

which is obtained from (15) for Z+ 00, dv/ dr-+ 0. If the quantity o is 
known from ex eriment, 

P 
then v, and the ratio q/p are obtained in ac"cord- 

ante with (16 
\ 

Elimlnatlng the quantity v from (15), we obtain an equation for 

da ---- 
dz 

VfP (1 + q/p) sin a - / cosa 
cosa - sin u p 

f sin a + cosa , a (0) E a, = 

Q i -a---_. y 
P ~%.z! 

7 *= 1 J (17) 

a alone 

(18) 

tan-’ j 

We thus have an initial value problem for ,X(T), which is solvable by 
quadratures 

(1 

s 

(f sin a + cos a) da 2P 
( f 9) 

(10 
[(1+q/~)sina--fcosa] I/fcosa--sina =--Gz 

Using the relations da cos a = dg (E = x / a), da = V dr and Equations 
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(15), we find 
a. 

& 1 --_- coS a (j sin a + cos a) cos a (j sin a + cos a) da 

du 2p (1 Q q/p) sina - fcosa 
01 

5 = - 6 5 (1 + q / p) sin a - j cos a 
a0 

Furthermore, dn = - tanad , 90 that 

1 = s sin a (j sin a + cosa) da 
?= 5 (1 + q /p) sin a - j cos a (21) 

40 
We Introduce the variables Z&if: = K , &n = Y . Then 

Qo 

s cosa (j sinq + cosa) da 
x= (I+ q/p) sina-jcosa= 

(L 
. . tan [l/s (a0 - a,)11 sin aa, 

= 7 
sin a, { 

cos a, - cos (U + a, - a,) -t ~0s am 02s (a0 - a,) In un 111~ (a _ am) J f 
a. 
-" sina(jsincz+ cosa) da 

-‘= (if- q/p)sina-jcosa= s (22) 

sinam 
c( 

= 7 
sina, 1 

sina,- 
unI% (a0 --aoo)l 

sin (a + a, -a,) + sina, 03s (a0 -am)~nUn[~jata_a 
00 

~1 
1 

Ellmlnatlng the parameter c , we obtain the equation of the curve 
Y= - @(Z j, j,), which depends only on the two parameters f and 
f - tan a_ . In order to transform to the dimensional variables x and m 
Y f P and y must be multiplied by the dimensional factor I 

a 4a2v, 
==$=7d~CrC= 

2 h-P) f_-l a 

( 1 35C,P j, 
(23) 

Substituting the values c-0.6, C,-Oo.3, Pi/ P-3, j/ jm-3* we have 
L- 3oa; If the dimension of the pebble c _ 3 cm, then ,& _ lm, which 1s 
In accord with the results of observation. If. however, we have a sand for 
which we may take c,-0.6, 6-0.3, pi/p- 3,j/ j,--,a-0.1 C*, then we have 
1, ,.. 4.5 cm . Thus, for a sand beach the curve y - I/(X) 1s PraCtlCaIIY a 
straight line. 

2 4 6 8 fU 

/ 

Pig. 2 

In the summer of 1962, the author carried out some measurements of the 
formofthe curve y =y(i1 on a pebble beach at the settlement of Rybach'ye 
(Crimea). The measurements were made at various surf Intensity in calm and 
stormy weather, using the simplest apparatus. The results are shown In 
Flg.2. The symbols in Fig.2 corresond to the following conditions under 
which measurenents were conducted: triangles with vertex down, rhombuses, 
circles, horizontal lines, and lines Inclines to the left or right are meas- 
urements In calm weather for light surf; triangles with vertex up and the 
two forms of semicircles are measurements for a very stormy sea, which 
shifted the boundary of the zone washed by the waves far (by several meters) 
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0 z 4 6 

NT. 3 

Curves calculated from Equations (22) and (23) for the same conditions and 
the four values of f_ Indicated are glven in Flg.3. 

To determine f properly, a cone of dry and wet pebble was poured on the 
beach and the angle of the vertex of the cone was measured. In addltlon,the 
angle of Inclination of the curve y-g(x) at the ridge (x - 0) was measured. 
The results of these measurements were close and gave /= 0.75. The choice 

Q, was made accordln to the experimental data for 
~kt$j'd;'ia~;e 'g=,?%ere the curve y= ,(x7 became a practically straight 
lne see Fig.2 . 

The data of Fig.2 Indicate, first of all, that the curve 
!' 

y(x) actually 
depends only slightly on the strength of the surf (as was men loned above, 
the position of this curve, that 13, the location of the point x-y- 0 , 
depends greatly on the strength of the surf). Secondly, they show that the 
approximate theory which has be-2 proposed describes the phenomenon satls- 
factorlly. 

h more careful examination of Fig.2 shows that the average experimental 
values of the ordinates of the clurve y-y(x) for stormy weather differ from 
the ordinates for a light surf by an approximately constant amount everywhere 
except for the first three values of the abscissa. Therefore, If the curve 
for heavy surf Is shifted downward It will coincide with the curve for a 
light surf everywhere except at t:,e points Indicated. This deviation is 
explained as follows. While for a light surf the boundary between the washed 
and dry portions of the beach f., outlined very clearly by a break In the 
cross-sectional profile, the boundary 1s more nearly washed away In a storm. 
This Is related to the fact that the irregularity of a stormy surf Is consid- 
erable and the edge of the sheet of water of the broken waves washes over 
the ridge of the wetted part of the beach (the point JC= r/=0) and smoothes 
It out by carrying particles from the rlgde to the dry area during the uprush 
of the wave, lowering the ordinates of the curve u =v(x) In the vicinity of 
the point x = 0 . 

If the revision of the curve Is made, the curve of Fig.2 computed by the 
proposed method turns out to be higher than the average of the experimental 
values. It Is possible, however, to obtain coincidence of these curves by 
adjusting slightly the values of C and C assumed above, within the range 
of reasonable values for these quantities, I.e. by a suitable change In the 
scale factor L and the values of tan (I,. 

We remark further that the equations which have been constructed are appll- 
cable for the description of only that portion of the beach which IS perlodlc- 
ally drained and then washed once more by the sheet of water from the waves. 
The profile of the portion of the beach which Is always submergedis, as obser- 
vatlon shows, tteeper, and Is Inclined almost at the angle of repose. 'Thus 
the curve constructed above beginning at the place of Impact of the breaking 
waves as they approach the beach gradually becomes steeper and steeper upon 
going out Under the water and even at a depth of the order of lm slopes at 
an angle of repose. 
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The coordinates of the points of the curve y = y(x) were measured with 
the aid of two graduated rods. The leveling of the rod OX was carried out 
with the aid of an underwater swimming mask on the glass of which a small 
quantity of water was poured, making the mask Into a level gage. 

The author would like to thank L.S. Magazlner and V.M. Ryzhlk, who assls- 
ted In carrying out the measurements and G.I. Ievleva, who performed the 
computations. 
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In connection with the frequently passed, at the present time, scientific 
discussions on the subject of stability of elastic systems with follower 
forces we have programed and solved the following problem. 

Athinclastic bar Is executing a uniformly accelerated motion under the 
action of a follower force, applied at one of Its ends. 

The differential equation of the elastic line of a homogeneous bar will be 

Assuming y = X$“’ and passing to a nondimensional form we obtain 

Here 

The boundary conditions are 

9' = 0, qV' Z l-j, for 5 = 0; nw ZZ 0, n"' 1 0 for I, = I 

We seek a soiution in the form of a series 

q =A,+A15+A,52+Alj3+ . . . 

According to the conditions at theends 

A2 = A, = 0, ZA,n (n - 1) (n - 2) = 0, XA, n (n - 1) = 0 (1) 

we have for the determination of the terms of the series the recurrence 
formula 


